Non-orientable quasi-trees for the Bollobás-Riordan polynomial

نویسنده

  • Fabien Vignes-Tourneret
چکیده

We extend the quasi-tree expansion of A. Champanerkar, I. Kofman, and N. Stoltzfus to not necessarily orientable ribbon graphs. We study the duality properties of the Bollobás-Riordan polynomial in terms of this expansion. As a corollary, we get a “connected state” expansion of the Kauffman bracket of virtual link diagrams. Our proofs use extensively the partial duality of S. Chmutov.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasi-tree expansion for the Bollobás--Riordan--Tutte polynomial

Bollobás and Riordan introduced a three-variable polynomial extending the Tutte polynomial to oriented ribbon graphs, which are multi-graphs embedded in oriented surfaces, such that complementary regions (faces) are discs. A quasi-tree of a ribbon graph is a spanning subgraph with one face, which is described by an ordered chord diagram. By generalizing Tutte’s concept of activity to quasi-tree...

متن کامل

A ug 2 01 4 A POLYNOMIAL INVARIANT AND DUALITY FOR TRIANGULATIONS

The Tutte polynomial TG(X,Y ) of a graph G is a classical invariant, important in combinatorics and statistical mechanics. An essential feature of the Tutte polynomial is the duality for planar graphs G , TG(X,Y ) = TG∗(Y,X) where G∗ denotes the dual graph. We examine this property from the perspective of manifold topology, formulating polynomial invariants for higher-dimensional simplicial com...

متن کامل

The multivariate signed Bollobás-Riordan polynomial

Ribbon graphs are surfaces with boundary together with a decomposition into a union of closed topological discs of two types, edges and vertices. These sets are subject to some natural axioms recalled in section 2.1. For such a generalisation of the usual graphs, B. Bollobás and O. Riordan found a topological version of the Tutte polynomial [3, 4]. In the following, we will refer to this genera...

متن کامل

Generalized duality for graphs on surfaces and the signed Bollobás-Riordan polynomial

We generalize the natural duality of graphs embedded into a surface to a duality with respect to a subset of edges. The dual graph might be embedded into a different surface. We prove a relation between the signed Bollobás-Riordan polynomials of dual graphs. This relation unifies various recent results expressing the Jones polynomial of links as specializations of the Bollobás-Riordan polynomials.

متن کامل

A Polynomial Invariant and Duality for Triangulations

The Tutte polynomial TG(X,Y ) of a graph G is a classical invariant, important in combinatorics and statistical mechanics. An essential feature of the Tutte polynomial is the duality for planar graphs G, TG(X,Y ) = TG∗(Y,X) where G ∗ denotes the dual graph. We examine this property from the perspective of manifold topology, formulating polynomial invariants for higher-dimensional simplicial com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2011